Hybrid atomistic-coarse-grained treatment of thin-film lubrication. II.
نویسندگان
چکیده
A new hybrid atomistic-coarse-grained (HACG) treatment of reversible processes in multiple-scale systems involving fluid-solid interfaces was tested through isothermal-isobaric Monte Carlo simulations of the quasistatic shearing of a model two-dimensional lubricated contact comprising two planar Lennard-Jones solid substrates that sandwich a softer Lennard-Jones film. Shear-stress profiles (plots of shear stress T(yx) versus lateral displacement of the substrates) obtained by the HACG technique, which combines an atomistic description of the interfacial region with a continuum description of regions well removed from the interface, are compared with "exact" profiles (obtained by treating the whole system at the atomic scale) for a selection of thermodynamic states that correspond to systematic variations of temperature, load (normal stress), film-substrate coupling strength, and film thickness. The HACG profiles are in excellent agreement overall with the exact ones. The HACG scheme provides a reliable description of quasistatic shearing under a wide range of conditions. It is demonstrated that the elastic response of the remote regions of the substrates can have a significant impact on the static friction profile (plot of maximum magnitude of T(yx) versus load).
منابع مشابه
Hybrid atomistic-coarse-grained treatment of thin-film lubrication. I.
A technique that melds an atomistic description of the interfacial region with a coarse-grained description of the far regions of the solid substrates is presented and applied to a two-dimensional model contact consisting of planar solid substrates separated by a monolayer fluid film. The hybrid method yields results in excellent agreement with the "exact" (i.e., fully atomistic) results. The i...
متن کاملFrom Initial to Late Stages of Epitaxial Thin Film Growth: STM Analysis and Atomistic or CoarseGrained Modeling
Epitaxial thin film growth by vapor deposition or molecular beam epitaxy under ultra‐high vacuum conditions generally occurs in two stages: (i) nucleation and growth of well‐separated islands on the substrate; (ii) subsequent formation of a thicker continuous film with possible kinetic roughening. For homoepitaxial growth, two‐dimensional (2D) monolayer islands are formed during submonolayer de...
متن کاملHybrid atomistic-coarse-grained treatment of multiscale processes in heterogeneous materials: a self-consistent-field approach.
A treatment of multiscale quasistatic processes that combines an atomistic description of microscopic heterogeneous ("near") regions of a material with a coarse-grained (quasicontinuum) description of macroscopic homogeneous ("far") regions is presented. The hybrid description yields a reduced system consisting of the original atoms of the near regions plus pseudoatoms (nodes of the coarse-grai...
متن کاملLattice Gas Cellular Automaton Modeling Ofsurface Roughening in Homoepitaxial Growth Innanowires
Our research addresses the problem of bridging large time and length scale gaps in simulating atomistic processes during thin film deposition. We introduce a new simulation approach based on a discrete description of atoms so that the unit length scale coincides with the atomic diameter. The interaction between atoms is defined using a coarse-grained approach to boost the computation speed. Thi...
متن کاملMultiscale coarse-grained simulations of ionic liquids: comparison of three approaches to derive effective potentials.
A coarse-grained model, with three sets of effective pair potentials for 1-butyl-3-methylimidazolium hexafluorophosphate ([Bmim][PF6]) ionic liquid, is introduced and used to study the structural and dynamical properties over extended length and time scales. Three sets of effective pair potentials between coarse-grained beads are obtained using the Newton Inversion and the Iterative Boltzmann I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 121 16 شماره
صفحات -
تاریخ انتشار 2004